
Misuse/Use Cases and Security Use Cases in Eliciting Security

Requirements

Qian Gao

Department of Computer Science

The University of Auckland

qgao005@ec.auckland.ac.nz

Abstract

In recent years, Misuse Cases, concentrating on the threats and exceptions to a system,

has become a popular method of analyzing and eliciting security (nonfunctional)

requirements when combined with Use Cases. Additionally, some recent papers show

that another kind of Use Cases, called Security Use Cases focusing on the harmful

sequences, can help to elicit security requirements. In this paper we ask, and attempt to

answer, the following questions. What is the relationship between Misuse/Use Cases and

Security Use Cases? What are the differences between these two methods when applied

into the same cases to specify security requirements? Are there any important distinctions

between results? If they are applied together, can productivity be improved or not?

1. Introduction

Presently an increasing number of software development organizations recognize that

developing security requirements is more important than designing protections because

paying attention to security requirements in the early stages of the software lifecycle

potentially saving millions of dollars. Thus, the methods analyzing and documenting

security threats and security requirements, like Misuse / Use Cases and Security Use

Cases, have become increasing necessary.

Misuse Cases, a new form of an old technology, are an extension of Use Cases. Use

Cases work fairly well applied to the process of examining functional requirements.

However, when used to elicit nonfunctional requirements, for example, security

requirements, they do not work as successfully. Differing from Use Cases, Misuse Cases

can be applied to specifying nonfunctional (security) requirements, as they are good at

exploring exceptions and threats rather than functions within a system. The metaphor of

Misuse/Use Cases described in [1][2] is adopted by this paper. This metaphor makes

elicitation into a game, like Chess or Go, which works properly to show the eliciting

process and the relationship between Misuse Cases and Use Cases.

In recent years, a closely related topic of research, called Security Use Cases, has been

developed. Security Use Cases are another form of Use Cases specifically used to elicit

security requirements. Compared with Misuse/Use Cases, Security Use Cases focus on

the hostile actions from attacking agents as well; but they have different eliciting process

and specified security requirements. To further reveal their differences, this paper is to

compare these two methods by applying them into the same cases.

This paper begins by introducing Misuse/Use Cases, their metaphor, utilizations (eliciting

security requirements) and a specific example. Section 3 talks about some opinions on the

topic of Security Use Cases and explains this method through two examples in e-

commerce [4]. In Section 4, according to the steps from [1][7], it is shown how

Misuse/Use Cases can be applied into the cases introduced in Section 3. Section 5

compares these two methods and concludes the advantages and disadvantages of them

each. Finally, Section 6 is the conclusion of this paper.

2. Misuse/Use Cases

2.1 Principle and Utilization

To understand Misuse Cases, it is necessary first to understand Use Cases. This is

because Misuse Cases were developed from Use Cases and are based on similar

principles. Use Cases [8] are organized collections of scenarios based on the sequences of

actions taken by normal users. That is to say, they focus on what a system can do or its

purpose. Hence, Use Cases are suitable for analyzing and eliciting functional

requirements in a system. This works through written specifications of a system�s actions

in textual form that includes the name of a use case, actor, precondition, flow of events,

post-condition and an alternative path. Applying Use Cases increases the clarity and

reusability of requirements.

With the development and growth of e-commerce and m-commerce people have

continued to consciously and deliberately attack the systems that support these. This has

lead to the growing importance in effective security requirements. Unfortunately, looking

on the positive side of a system, Use Cases are deficient in eliciting these requirements.

Thus, Use Cases have to be extended to Misuse Cases to adapt to this area. Misuse Cases

[1][2][7], are a specialized form of Use Cases that focus on the exceptions and threats

caused by hostile agents to a system. The simplest application of Misuse/Use Cases is to

elicit specific security requirements in both informal and formal situations. Besides

analyzing requirements, Misuse/Use Cases are also valuable in many other types of

application [1][2]. Some of these include identifying exceptions, generating test cases and

trading off conflicts when designing a system which are not explained in this paper.

Usually the approach of developing Misuse/Use Cases is top-down, which moves

recursively from higher to lower levels; analyzing and specifying requirements from the

points of both users and misusers. Existing Use Cases are continually challenged by

potential threats, resulting in the discovered threat prompting new functions. The cases

relationship explored at lower levels may be treated as the supplement of higher levels.

The process will be repeated continuously until the problems in the system appear to be

defined completely. The next part discusses the metaphor employed to explain a typical

example.

2.2 Misuse/Use Cases Example [1]

Misuse/Use Cases employ a �game� metaphor whose algorithm is described as one

team�s strategy of �thinking ahead to the other team�s best move and acting to block it�

[1]. Using this metaphor derives several benefits. The metaphor is more comprehensive

than expressing in words, it provides clear relationship between cases and finally it is

easy to find and trade off conflicts. In this metaphor, users or hostile agents are

represented by several stickmen; white and black teams respectively stand for Use Case

and Misuse Case. The relationship is as follows: a system at a higher level �includes�

subsystems at lower levels; a misuse case 'threatens' a use case; a use case 'mitigates' a

misuse case. The whole elicitation has a balanced zigzag form from up to down. As in the

car example illustrated below, when a thief attempts to steal the car, the driver has to

extend a subsystem called �lock� to defeat this attempt. The thief then tries to short the

ignition which the diver can control by locking the transmission. However, do you

believe that the thief will give up? Possibly not. Hence the main constraint of this

metaphor is that there is always the possibility of unknown exceptions when relying

on Misuse/Use Cases.

Fig.1. Misuse/Use Cases Elicitation for a Car System

3. Security Use Cases

3.1 Principle and Utilization

Security Use Cases are another kind of Use Cases particularly used to elicit security

requirements whose generation and utilization are introduced in [3][4][5][6]. As

explained Use Cases, the principle and metaphor of Security Use Cases can be omitted

here. One approach to applying them is to separate the elicitation of security requirements

(Security Use Cases) form that of functional requirements (Applications Use Cases).

Security Use Cases require several abstracted security services with security conditions.

When their security conditions are satisfied, they will extend the required functions

(application Use Cases) to a system. Essentially, in different systems there are several

general security requirements [3][4][6]. Thus, essential Security Use Cases provide a

highly reusable way of organizing and specifying security requirements. This is the

main reason why in spite of the growing interest in Misuse Cases, this approach has

been applied into large-scale industrial use.

According to the threat analysis, six kinds of security services (Security Use Cases) are

elicited in application systems. These are listed as follows:

�Authentication Service: allows an entity (a user or system) to identify itself positively

to another entity.

Access Control: protects against unauthorized access to resources.

Confidentiality: protects against information being disclosed to any unauthorized entity.

Integrity: protects against unauthorized changes to data.

Non-repudiation: protects against one party to a transaction or communication activity

later falsely denying that the transaction or activity occurred.

Availability (denial of service): Denial of service occurs when an authorized party is

prevented from accessing a system to which he has legitimate access. [4]�

3.2 Security Use Cases Examples [4]

Before we start looking at them, there are some preconditions that will make the

comparison more precise:

1. The examples are based on application system security rather than network security;

2. With the above precondition, denial of service does not need to be considered here;

3. The assumption is made that the database is secure.

3.2.1. Browse Catalog

The first use case is �browse catalog� where a customer can browse various catalogs and

view various items from the catalogs. In the authors� opinion, an access control and

authentication service should be applied into this case to improve security.

Authentication identifies users through identity input, with which the system can accept

legitimate users (identity information is kept for its access control) and refuse those

invalid ones. If the customer is authenticated as a legitimate user, the system will use his

identity information to check whether he has permission to access a specific catalog. As

Security Use Cases agree to the metaphor used in Use Cases (textual form), they can be

presented as:

�Use Case Name: Browse Catalog

Summary: Customer chooses a catalog to browse.

Actor: Customer

Precondition: System is ready.

Description (Base use case):

1. <authentication>

2. Customer chooses to view a catalog index.

3. System displays catalog index.

4. User requests to view a specific catalog.

5. <access permission>

6. System reads the catalog and displays it.

Postcondition: Customer has browsed a catalog. [4]�

Besides this, the use case �browse catalog� has another two extension use cases to define

in the same form. These are �authentication� and �access permission�. However, their

definitions do not need to be listed here because they are not necessary for our

comparison. Figure 2 shows the relationship between these.

Fig.2. Browse Catalog with Security Use Case in Electronic Commerce System

3.2.2. Perform Purchase

The other example of Security Use Case application is used to perform secure purchase

between customers and suppliers through purchase requests. During the purchase, a

customer wants to send his purchase request to a supplier and pay by credit card. This

causes the system to encrypt the request to maintain confidentiality and protect data

from being changed with integrity check value. Besides this, to avoid falsely denying the

request, the system needs a non-repudiation service. Usually digital signature is

employed in this scenario. Figure 3 illustrates this process, which includes two

application use cases (�Send Purchase Request� and �Receive Purchase Request�) and

the above three security use cases. Unlike the first example, there are two operators of

one request, so that it is descried from two points. The descriptions of these use cases in

textual form are omitted here, which define the order of applying the security use cases.

Fig.3. Perform Purchase Request with Security Use Case

4. Application of Misuse/Use Cases to e-commerce cases

4.1. Browse Catalog with Misuse/Use Cases

To apply Misuse/Use Cases to these two e-commerce cases, six students were invited. All

having some security experience in the computer science department. A small informal

workshop was formed in which we pretended to be not only users but negative agents

threatening the system. Here Misuse/Use Cases were used as an informal approach to

analyze and specify security requirements in small systems. Thus, the group just needed

to analyze and list all of the misuse/use cases and their relationship according to the steps

introduced in [1], but not to prepare for the later project. During this process, there were

several iterations needed to refine the elicitation. In addition, the assumption was made

that the misusers to be considered in these cases would only include outsiders instead of

insiders. This does not affect our result. For the �browse catalog� use case, our work is

shown as:

1. To explore what the system is and roughly think about its functions: The

system functions within some e-commerce catalogs whose main functions are

providing catalog browsing and banning illegal reading.

2. To clarify the users and misusers: Users here should be customers and the

system; misusers can be the users with intention for misuse or hackers. However,

as there is no writing operation in the system at all, the users with the potential for

misuse can be ignored here.

3. To confirm and write down what the exact use cases are performed by users:

In our opinion, the use cases in this example are quite simple, basically identical

to our estimation. In this situation, we can use one stickman to represent both of

the two users to simplify the graph. In this scenario the elicited use cases are

browse catalog and security control. Here, �Security control� is a sub-function

of the main function which is a �browse catalog� function.

4. To brainstorm a list of misuse cases for hostile agents: Now we already have

use cases, so we only needed to search for ways threatening them. Besides misuse

cases, the relationship between these and the existing use cases should be

established. According to our analysis, the main attempt of a hacker is to intrude

into the catalog which is not open to him. The hacker can threaten the main use

case through brute-force password attack, system security-hole attack, and

simulating users. These three kinds of attacks concluded by our group members

were thought to be more general and powerful than others.

5. To consider how to mitigate the misuse cases: There are several security

mechanisms for each threat. Regardless, Misuse Cases do not focus directly on

the mechanisms, so any one of these can be selected to provide a general idea.

First we decided to use log access attempts to defeat a brute force attack; second

to keep hackers from the system by firewalls; last to set user recognition if

hackers pretend to be users. All of these use cases belong within the �security

control� category.

6. To document subsystem use cases and some misuse cases: This dispensable

process can be seen to supplement metaphor when a system is quite complex.

Accordingly, we did not think it is necessary in this example.

The result of the process shown in Figure 4 gives us a more direct understanding of the

above explanation.

Fig.4. Browse Catalog with Misuse/Use Case

4.2. Perform Purchase with Misuse/Use Case

In order to make our comparison more precise and convincing, we applied Misuse/Use

Cases into the other e-commerce case given in 3.2.2, �perform purchase�. The main steps

taken in this use case to ascertain security requirements are the same with those of the last

application, which I summarize as follows:

The system suppliers try to provide customers with purchase service and security

protection. The users are customers and the system including those who fill out

purchase requests and pay by credit card. The misusers include the users performing

misuse cases as they may falsely deny their purchase requests. As for hackers often

attempt to steal or change a user�s information evilly during purchase. Reflecting on

the threat, the security system applies several subsystems to block these threats. This

involves a required digital signature for false denying, encryption for stealing, and

entry control (e.g. hash function) for unauthorized change. However, hackers can use

decryption to counter encryption, so that the system has to practice more powerful

encrypting mechanism. The relationship between them is clearly displayed in Figure 5.

Fig.5. Perform Purchase Request with Misuse/Use Case

However, different from the first example, the specifications for subsystem use cases

need to be written down as the performance of these use cases has a given order:

�Encrypt request� should come after the other two requirements. This is because it also

needs to encrypt the information of security. The following is the description for

�Encrypt request�:

Use Case Name: Encrypt request

Summary: System encrypts customer purchase requests.

Actor: System

Precondition: All of the information required by system (purchase and security) is ready.

Description:

1. System gathers the information from customers.

2. System encrypts the information.

Alternatives:

If the information of security is not ready, system has to wait until it is provided.

Postcondition: System has encrypted all the information.

5. Comparison

In this section, Figure 2 and 4, Figure 3 and 5 are compared. It details the similarities and

distinctions between Misuse/Use Cases and Security Use cases from different aspects.

The following is what was found:

(1). Aim of Method: Although both of the methods are useful in eliciting security

requirements, they have totally different purposes. Because Misuse/Use Cases let

misusers successfully attack applications, they are an effective way of analyzing security

threats rather than directly specifying security requirements. In contrast, Security Use

Cases allow applications to successfully protect themselves from relevant threats. These

have the overt purpose of providing specific security requirements. Thus, Security Use

Cases (SUCs) are a more direct method than Misuse/Use Cases (MUCs) when

eliciting security requirements. From the point of view of the writer, Security Use

Cases are actually prompted by Misuse Cases. There is however no display or

specifications of their relationship when applying SUCs. In another words, the plots of

SUCs stand for the left side (the �white team�) in the MUCs� plots.

(2). Metaphor Used: For the first difference, MUCs must analyze threats from the

perspectives of both users and hostile agents; while SUCs can only employ legal users.

Moreover, the metaphors used by the two methods are quite different. On the one hand,

both of them employ textual form for Use Cases; on the other hand, MUCs treat the

game diagram as the main metaphor, while SUCs use graphs as another expression

of texts. Hence the elicitation of MUCs is more enjoyable than that of SUCs.

(3). Eliciting Result: The requirements elicited from MUCs and SUCs are the most

important thing for analysts to estimate and understand. From the four figures of the two

cases, we can see that the requirements for MUCs are more specific than those for SUCs.

Neither of the two methods focuses on concrete security technologies. Thus, for most

of the systems, SUCs are a highly reusable way of exploring security requirements.

These are more effective and economical as reuse of requirements could speed

elicitation and lead to significant savings in development costs. However, it is hard to

suggest completely reusable mechanisms for different systems. So for some systems,

MUCs still play an important role in eliciting security requirements. However their

potential to elicit the required result is restricted by the experience of analysts.

(4). Conflicts Exploration: MUCs provide conflict exploring by reacting when two cases

conflict with each other in game diagrams. Through game diagrams the conflicts

revealed by MUCs become apparent. Unlike MUCs, SUCs use a more scientific and

accurate way to define conflicts. This is known as Object Constraint Language

(OCL), which can find the potential disagreements. When a OCL is applied to

�perform purchase� system, we may find that �Generate Integrity Check Value use case

can have a mutually exclusive (zero or one) relationship with Provide Non-Repudiation if

a digital signature for providing Non-repudiation security service is realized with a hash

function, which provides an integrity service as well [4]�. That is, if there are two

mechanisms for one security service, conflicts will appear because they can have opposed

decisions on the same request.

Overall, in the two examples, the requirements elicited through Misuse/Use Cases can be

abstracted into those by using Security Use Cases. In most situations, Security Use Cases

are more suitable for specifying security requirements. Nevertheless, Misuse/Use Cases

can also work independently, and theoretically can be vital toward reinforcing the

functions of Security Use Cases as they are able to analyze specific situations. There is a

good example in [6] examining security requirements by combining Misuse and Security

Use Cases.

6. Conclusion

This paper compares the performance of Misuse/Use Cases and Security Use Cases when

applied to explore security requirements. Both of these two methods have their own

advantages and disadvantages and are suitable for different kinds of applications.

Obviously, Security Use Cases are more effective for the general large systems. For

future work, it is valuable to think about employing the two methods together to improve

their effectiveness.

7. References

[1] I. Alexander, �Misuse cases: use cases with hostile intent�, IEEE Software 20(1), 58-

66, Jan/Feb 2003.

[2] I. Alexander, �Misuse cases help to elicit requirements non-functional�, Computing &

Control Engineering Journal, Volume 14, Issue 1, 40 � 45, Feb. 2003.

[3] Guttorm S., Donald F., Andreas L. Opdahl, �A Reuse-Based Approach to

Determining Security Requirements�, Proceedings of the Ninth International Workshop

on Requirements Engineering: Foundation for Software Quality, REFSQ'03, 127-136,

2003.

[4] Gomaa, H., Eonsuk Shin, M., �Modelling complex systems by separating application

and security concerns�, Engineering Complex Computer Systems, 2004. Proceedings.

Ninth IEEE International Conference, 19 � 28, 14-16 April 2004.

[5] Popp, G., Jurjens, J., Wimmel, G., Breu, R., �Security-critical system development

with extended use cases�, Software Engineering Conference, 2003. Tenth Asia-Pacific

2003, 478 � 487, 2003.

[6] Donald Firesmith, �Security Use Cases�, Journal of Object Technology, vol. 2, no. 3,

53-64, May-June 2003.

[7] Sindre, G., Opdahl, A.L., �Eliciting security requirements by misuse cases�,

Technology of Object-Oriented Languages and Systems, 2000, TOOLS-Pacific 2000,

Proceedings. 37th International Conference on 20-23 Nov. 2000, 120 � 131, 2000.

 [8] I. Alexander, T. Zink, �Introduction to systems engineering with use cases�,

Computing & Control Engineering Journal Volume 13, Issue 6, 289 � 297, Dec. 2002.

